
L D-R14l 399 A METHOD FOR CONSTRUCTING A UNIMODRL INFERENTIAL OR i/i
PRIOR DISTRIBUTION(U) TEXAS UNIV AT AUSTIN CENTER FOR
CYBERNETIC STUDIES P BROCKETT ET AL. JAN 84 CCS-RR-473

NCASSIFIED N86i4-i--C-2236 FG 12/1 NLElu'.li
NONNI



S.-.',

.,2,

• .m

- a.flI,.

: °iIIiIL.V

": -' ~ IIIIIII1"5 : IIII

MICROCOPy RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS.1963-A

"U



/2
00

Research Report CCS 473

A METHOD FOR CONSTRUCTING

A UNIMODAL INFERENTIAL OR PRIORIDISTRIBUTION

by

P. Brockett
A. Charnes
K. Paick

CENTER FOR
CYBERNETICSTUDIES

The Universityof Texas
Austin,Texas 78712

.. . .... ,... 
.,

L"(A 2 ' 1-084

SA.

05 21 145
_I o ... o .



Research Report CCS 473

A METHOD FOR CONSTRUCTING
A UNIMODAL INFERENTIAL OR PRIOR

DISTRIBUTION

by

P. Brockett
A. Charnes
K. Paick

January 1984

This document has been approved
for public release and sale; its
distribution is unlimited.

Acknowledgement: We wish to thank D.V. Lindley for encouraging comments on the
ideas presented in this paper.

This research was partly supported by ONR Contracts N00014-81-C-0236 and
N00014-82-K-0295 with the Center for Cybernetic Studies, The University of Texas
at Austin. reproduction in whole or in part is permitted for any purpose of
the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director ..
Graduate School of Business 4.138 "' ' 2 41984 -
The University of Texas at Austin

Austin, Texas 78712 1

(512) 471-1821

N, -' - ", ,'-'-- " ". * ". ? "" *.*" ." - "" " " " . "*.. " "". . . . "" '' . . "" '."



S - 1 7

Abstract

I)in this paper we show~iow to take personally assessed information and use it

to develop a continuous unimodal prior density function, perhaps for subsequent

Bayesian analysis. The method is completely nonparametric and uses only the

furnished information and no other. The technique is easily computerized, and

yields a closed analytical formula for the prior. The resulting distribution may be

considered to be an inferential distribution.

'.-2,"Keywords: Prior distribution assessment, unimodality, information theory,

:.-.. maximum entropy
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1. Introduction

A basic rule in statistical analysis is to use all the information which you

have, but avoid using any information which you don't have. The desire to use the

prior belief or experiences of the scientist as information capable of being input into
• .- the statistical analysis has led to the branch of Bayesian statistics, and the same

goal has also led to information-theoretic statistical analysis. One crucial problem

which must be addressed in applying any Bayesian methods in real situations in

business, medicine, and other fields is how to take the information supplied by the

client (or the scientist himself) and obtain an inferential (or prior) distribution for
the stochastic phenomenon under study. In particular. an inferential distribution
must be found in order to update expectations (and find Bayes estimators), keeping
in mind that you should avoid using information which you don't have. In real
applications you should not necessarily assume a parametric prior (such as a normal
prior) and just proceed to estimate parameters unless the distributional model has

been given as part of the information. To paraphrase Albert Einstein, the model
should be as simple as possible. but no simpler.

In this paper we address the topic of inferential density assessment when we

know the prior density is unimodal. We quantify the amount of information in a

statistical density by using the information-theoretic techniques, and we show
explicitly how to "'use all the information available (including unimodality) and no

other". Our technique involves transforming the problem from the original
unimodal stochastic variable to an auxiliary variable. We then estimate the density

for the auxiliary variable using minimum discrimination information subject to the

constraints obtained about the original variable. The detailed formulae are given in
the next several sections. The result is easily computerized so that the user need

only input a few basic characteristics, and the computer then outputs a graphical
and also analytical representation of the desired density.

'-4
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2. Information Theoretic Density Estimation

In information theoretic notation the expected amount of information in an

observation X for distinguishing between two density functions f and g is denoted by

I(f g). Mathematically this expected information is quantified by the expected value

of the difference in log-odds ratio or Kullback-Leibler number, viz,

(2.1) 1(fig)= f Ix)1n I L(-- I.(dx)
Jg(X)

where X is some dominating measure for f and g. We shall call I(fJg) the

informational divergence between f and g. If g(x) = I for all x, then I(flg) represents

ifle informational divergence between the postulated density f and the completely

uninformative density g. In this case I(fOg) is precisely minus the entropy off. and is

a measure of the uncertainty of the density f. In practice, A(dx) is selected as

Lebesgue measure in the (absolutely) continuous case. and as counting measure in

the discrete case.

If we are given certain generalized moment constraints which the density f

must satisfy, such as
1 = bo = f f(x) (dx)

: ., =i f h, W x) A Urd)

(2.2)

= h k(x) f(x)A (dx)

then the minimum distrimination information (MDI) estimate of the density g

subject to the constraints (2.2) is defined to be the minimum of(2.1) over all f subject

,Z to (2.2). If g(x)= 1, then this density estimate is called the maximum entropy density

(M.E.) subject to (2.2). This density is the least informative distribution possible

subject only to the constraints (2.2). If we are to use only that information given in

(2.2), and no other information, then the M.E. density is implied. This constrained

.1 M.E. density estimation may be construed as a useful extension of Laplace's famous
"principle of insufficient reason" which postulates a uniform distribution in the

situation in which no knowledge is available. Here, when information of the form

+(~~. . ,, •5*~ ..... . ..... *. .',-,.. ,• p'..,. ....... . --..

*5.....- 5. .* *,, ,, -, ... .* . . , . . .... .. . . .... ,..... ,- - .. ,.. . ..-. ... .. -, .5.
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(2.2) is available, we select that distribution which is as close to uniform as possible

subject to the given constraints (2.2). Of course other "goal densities" g may be more

appropriate in other situations.

The explicit calculation of the MDI density subject to (2.2) is easily carried out

using Lagrange Multipliers. Introducing a multiplier al for constraint i, we wish to

maximize -I(flg). We have

-Ifg)= t'(x)tn x -InzbS

J I(x)Il - b-
~k

- =f'(x) In [ - a Ih (x) t (dx)
JfX.  I i = I

i','.'m'~ = (X) In j=0 dx

f( x) }

- (&).g(X - A ,(dx)

where h0 (x) = 1. The inequality follows since lnx:_ x - 1 with equality only when

x = 1. Thus the above inequality becomes an equality when

AX ~x)p a a h x )l g(x).
-" a=0

Summarizing, the MDI density subject to the constraints (2.2) is precisely

(2.3) f(x)= - a (x) g(x)
i=O 16

where ho(x) = 1, and the constants ai, i = 0, 1, ... ,k are found by solving the moment

constraints (2.2) simultaneously.

An easier method for determining the actual numerical values for , can be

derived from the results in Brockett, Charnes and Cooper (1980), or in Charnes,

Cooper and Seiford (1978). There it is shown that the problem of minimizing (2.1)

6, ~ - '.;. :,",...'.,i........ .'.;.'-.:< - ,< .' .;..¢...........<..'..... :...:. °.'..:. .. ..
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subject to (2.2) is a constrained strictly convex programming problem with an
unconstrained dual convex program involving only exponential and linear terms.

Moreover, the desired ai, i = 0,1,..., k are precisely the dual variables and may easily
be obtained on a computer by any of a number of nonlinear programming codes (e.g.,

the SUMT method code of Garth McCormick and Charles Mylander). This duality
relationship is exploited in the final section where numerical examples are given.
Thus the entire process of obtaining the MDI density is easily computerized.

3. Exploiting Knowledge About Unimodality

Most people when forecasting or estimating a prior distribution will have a

unimodal density in mind. Consequently the M.E. density obtained in section 2 will

be rejected by most decision makers, since, except for certain serendipitous
situations concerning the relationships among the functions hi(x) and the bi's. the
M.E. density cannot be guaranteed to be unimodal. A bi- or tri-modal density is hard

to justify to the decision maker in many (but not all) situations. Accordingly, in this
section. we show how to incorporate the knowledge that the prior density for the

decision maker is unimodal. This technique is of independent interest in improving
many procedures to incorporate unimodality. We shall show how to obtain an
inferential (or prior) distribution which is as uninformative as possible subject to

being unimodal and satisfying the constraints (2.2)

As a concrete example let us suppose we have elicited from the decision maker

the following information concerning an unknown prior variable 0: (these may be as
the result of sales forecasts for example).

1) The prior density for 0 is unimodal with the most likely value 00.
2) The range of possibilities for e is a to b.

3) The decision maker will give even odds that 0 is between two numbers a
and a2 -. (This will give a measure of dispersion for the desired density.
Prescribing the 2 5 th and 7 5th percentiles is another usual vehicle for

obtaining this sort of measure.)
4) The decision maker assesses the chance of 0 falling short of 00 as p. (This

will give a measure of skewness for the prior density).
These constraints translate into:

i) 0 is unimodal with mode e0

$ and

3. e q o . " . " q' t t " .. " - . . ° - ' ' . . ' ' ' "" . " ' - . ' '" " ' " " " " . ° " " " ' . . . -. - " '" "' '% . " ' °
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1 0 = 1b h0(o ) f(O)dO
a

(3.1) .5=b, = J h1 1O)/'(O)dO

p = b2= h(O)f(0)dO

where

ho(0)= 1, h1(O)= 1i °0E 2

and
I if 0 5 0 0

0 i f 0 > f9

Of course other possible constraints (such as other assessed percentiles) may be
added if the statistician desires.

The problem addressed in this section is how the Bayesian statistician (or

more generally, the scientist desiring an inferential distribution) can use the

unimodality information in a constructive manner.

If 0 is a unimodal variable with mode 0., then the density satisfies o()_ 0 for

< O0 and No(e)_0 for 0 > 0 0. Accordingly - (0 - o0)(o) a 0 for all 0. and so - (0 - o0)f'(o)
is proportional to the density of some random variable, X. This is equivalent to the

decomposition

(3.2) 0 -00=U- X

where U is uniform over [0,1] and independent of the random variable X, which, of

course, is just L. Shepp's reformulation of Khinchin's famous characterization of

unimodal random variables (cf. Feller (1971) page 158).

Since knowledge that 0 is 00 - unimodal is completely equivalent to the

existence of the decomposition (3.2) we know such a random variable X must exist.

However we are ignorant about its precise form except for the constraints upon X
which are implied by the known constraints (2.2) on 0. By using the decomposition

(3.2), together with conditional expectation given X we obtain

(3.3) E[h(0)]= E[ h* (X)]

.e . 5 5 .- . . . ..°. -
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where

h*(x) = Eh(UX + 00 ) X x = -h t + 00 )dt.
x0

The relationship (3.3) allows us to transform the moment constraints (2.2) on 0

into moment constraints of the form

bi  J h4 (x)f'<(x)dx, i=0,1,2,...,k

upon X. In this regard the transformation (3.2) is in the spirit of Kemperman (1971).

As an illustration, the transformed constraints (3. 1) become

'A-' I = =o hJ h(x) fX(x) dx

(3.4) 5b 1 = h*(x) fX(x)A(dx)
t

p b2  h(x) fx (x) A (dX)

where

h(x)= Jdt =1,%0 X0

h i~ ~ 2x 90 ifx a-- a0 - 0 - 2 -0

0iix - -o

X 22 0

1 .if a -~ Oo~ -

and
{1 ifX < 0

h;(x) 0 ifxo

10 fx > 0k The problem of constructing an inferential (or prior) distribution for o subject
to the constraints (3.1) and unimodality has now been transformed via (3.2) and (3.3)

A' into the problem of constructing a density function for X subject to the constraints

(3.4). By unimodality of 0 we know X exists, however we have no information

concerning X other than the fact that it satisfies (3.4). Accordingly, we may use the
U;.

" " ,.p
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extension of Laplace's principle of insufficient information to postulate a maximum
entropy density for X. We obtain (from (2.3))

.(3.5) f(x) exp - Y a.hL(x) forx E[a-0, b-0o]

and again using the relation (3.2) the original density for 0 becomes

(3.6) f(O) = - ( 1 ifO < 0

1" J ' dx. .-.. tX(x)Y- if O >%. Z- 00

The constants (ai} needed to determine (3.5) and hence (3.6) are found using the
unconstrained dual formulation discussed previously which is explicitly stated in the
final numerical example section.

The computer program to implement this analysis should also plot the
obtained inferential or prior density using the construction (3.6). One might use this

graph for consultation with the decision maker. If more information is available or
needs to be supplied for decision making purposes, additional constraints are added
to (3.1). transformed into new constraints on X via (3.3) and added to the constraint
set (3.4). Such supplementation can be continued until the decision maker when
presented with the graphical density representation is satisfied with the inferential

- density obtained.

4. Numerical Illustrations

In this section we shall exhibit the numerical results of implementing the
previous procedure. From the duality theory given in Charnes, Cooper and Seiford

(1978), the dual to the primal problem of minimizing (2.1) subject to the constraints
(2.2) is the unconstrained convex programming problem

k rA

(4.1) "ax I a-b. g(X)exp{- a Lh (x)tA(dx).
t=. I.i i=0

In the unimodal estimation problem considered in the previous section, one
estimates the parameters {ai} in the density fx(x) by solving (4.1) with hi* replacing
hi, and A(dx) = dx.

One further point should be made here. If one wishes to impose a continuity
constraint upon the density f, at the mode 00, then, from equation (3.6), such a

%i" constraint on 0 translates into a moment constraint upon the auxiliary variable X of

4." : ; € , :-_ ' .... :. - -<. % ; . -:;- .>j . .".,. .".--.-... . . ."- -
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the form

(4.2) 0 J h+ (X)f(x) dx

where h*k+ (x) 1 1/x (there is no corresponding hk + constraint on 0). Similarly,

smoothness constraints upon the density f. near the mode e0 can be accomplished by

choosing "goal densities" g(x) in the estimation of the auxiliary density fx which are

sufficiently smooth as x-. 0 We shall illustrate this with three goal densities. Up to

the appropriate normalizing constant these are g,(x) = I (corresponding to maximum

entropy estimation for fx)

exp{-IxlI- -- - ) ) Irrl S 8

g 2 (x)2= 2 o

; and
,1

g 3 (x) = erp{-- x 2 / 2a 2 /VT

The goal density g2 behaves like the constant I outside jxj-<6, and dips smoothly to

zero as Ix-sO. This goal density approximates the maximum entropy procedure
given by gt, but constrains the resulting prior density f0 to be smooth at the mode.

The goal density g3(x) corresponds to the fx density which would result from f. being

normally distributed, and hence this goal density gives the "close to normality

subject to constraints" result for the estimated prior density f,. 1

Figure 1 shows the resulting prior distributions obtained using each of these

goal densities and using only the following client furnished information concerning

1. 0 is unimodal with possible values between 0 and 10

- 2. the most likely value for 0 is 3

SJ 3. there are even odds that the value of 0 lies between 1 and 5

.The continuity and smoothness at the mode is not guaranteed for asymmetric density using the goal density g3 t x. due to the

ha symmetry of the normal. To impose the smoothness and the -close to normality subject to constraints" interpretation, the

product of g2 (i) and 93(l) can be used as a goal density. Figure t shows this case.",J
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4. there is a 30% chance that E will fall short of the most likely value of 3.

(INSERT FIGURE 1 HERE)

It can be seen that the parameter 8 in the goal g., serves as a smoothing

parameter.

For a second illustration, assume we have the following information:

1. 0 is unimodal with possible values between 0 an& 10

2. The most likely value for 0 is 5

3. there are even odds that the value of 0 is between 4 and 6

4. the distribution of 0 is symmetric about 5

(INSERT FIGURE 2 HERE)

Figure 2 shows the results of the calculations in this second situation for each

of the goal densities.

As a final note, we should remark that the technique described in this paper

can also be extended into a new technique for non-parametric unimodal density

estimation using actual data and prior information. We develop this non-parametric

unimodal density estimation technique in Brockett, Charnes and Paick (1983).

5,
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